
ening; to*, the induction period in the isothermal process; s the dimensionless induction 
period; t, dimensionless time; ~, dimensionless temperature; O, dimensionless activation 
energy; ~, the rate of temperature rise; ~, the shearing stress; ~, the shear rate; c, heat 
capacity; p, density; K, reaction rate; ~, rate of conversion; k0, initial reaction rate at 
the temperature T0; ~0, the dimensionless initial reaction rate at the temperature To; q, 
dimensionless characteristic of the thermal effect; Q, the thermal effect of the reaction. 
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THE MACROKINETICS OF DIFFUSION CONVERSIONS IN METALS 

WITH A DISPERSION PHASE 

Yu. A. Buevich and S. L. Komarinskii UDC 539.2:548.5 

The evolution of solid dispersions under isothermal conditions has been in- 
vestigated for the situation in which the exchange of the mass of discrete in- 
clusions with the matrix in which they are embedded is limited by the diffu- 
sion into that matrix. Expressions have been derived for the quantities which 
describe the kinetics of conversion and a comparison with experimental data 
is carried out. 

When heterogeneous metals and certain other types of solid materials are subjected to 
processes of chemical or heat treatment, their thermodynamic stability is disrupted. If 
the resulting level of metastability is sufficiently small, the consequent transition of 
the solid dispersion into a new stable state is not associated with the fluctuating formation 
of the nuclei of a new phase, but comes about as a result of the growth or dissolution of 
the initial inclusions. The speed with which this conversion takes place is determined not 
only by the kinetics of the interphase exchange, but also by the rates of impurity diffusion 
transport within the heterogeneous system being examined. Therefore, the evolution of the 
inclusions and the "transit" mass transfer to solid dispersion whose properties vary with 
the change in the dimensions and diffusion displacement of the inclusions must be taken into 
consideration simultaneously with consideration of the diffusion interaction of the inclusions 
and the effect exerted by proximity on the transport of the impurity through the spaces bet- 
ween the inclusions. 

A system of nonlinear equations has been formulated in [i] to describe the isothermal 
processes of diffusion conversion in solid local-monodisperse systems characterized by a 
uniform numerical concentration of spherical inclusions. This system determines the aver- 
age concentration of the diffusing impurity in each of the phases, as well as the volumetric 
concentration of the inclusions in the dispersion, and it also contains a number of quanti- 
ties which characterize the kinetics of the conversion and which, in rather complex fashion, 
depend on the physic,chemical parameters of the dispersion. This relationship is examined 
in considerable detail in the following for the case in which the exchange of impurities 
between the surfaces of the inclusions and the solid solution within the matrix is limited 
by the diffusion within the matrix, which is most important from the standpoint of applica- 
tion [2, 3]. 
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The effective coefficient of diffusion D in the solid dispersion is introduced in con- 
ventional fashion as a proportionality factor between the average rate of impurity flow and 
the gradient of its average concentration c o within the matrix, but with opposite sign. The 
effective coefficient of interphase mass exchange K is defined as the proportionality factor 
between the density of the impurity flow when the inclusions to the matrix and the moving 
thermodynamic force c,0 - Co, where c,0 functions in the role of equilibrium concentration 
in the matrix. If we introduce the unknowns x and y by means of the equalities 

D = xDo, K = V z (D/a z) = xY ~ (Do/a~), (1) 

from [1] we can ob ta in  fo r  these  a system of t r a n s c e n d e n t a l  equa t ions  

l-----~~ = 1 - - p  3 +  
x ~ ~z 1 ~ 1 [ (  2 + l ~ g )  x+~~  " '  

yz 3p~o 
l + y  ~0--x(1 + y)~ 

(2) 

In this case, for the rate of change in the radius of the inclusions and the velocities 
of their diffusive motion the following representations are valid [i]: 

da x ( l + y ) ~ o  Do c , o - - C o  

dt ~0--x( l+y)~o  a C , o - - C , 1  

Vz ~Jc ~ fi  x ~o]C,~} DoVco. 

We have used the  fo l lowing  n o t a t i o n  in (2) and (3) :  

(3) 

C,1 (% C,1 
(..0-- - -  - -  , O g - -  , 

C,o --. C,1 I --  (z C,o 

~i aki ksi ~1 
- , c * * -  r ( i - - 0 , 1 ) ,  ~ = - - .  

D, ki - ~o 

(4) 

~i ~ i corresponds to the diffusion regime of conversion as it pertains to the i-th 
phase, when the exchange between the surface of the inclusion and the solution within the 
volume of this phase is limited by diffusion; ~i ~ i corresponds to the kinetic regime in 
which this exchange is limited by the reactions of sorption-desorption. 

It should be stressed that formulas (2) and (3) have been derived under a number of 
simplifying assumptions whose validity in each specific case must be checked. First of all, 
these formulas correspond to a continual model of a moderately concentrated dispersion, which, 
in principle, imposes limitations on the concentration interval over which they areapproxi- 
mately valid. These limitations may be established by comparison with experimental data 
or with the more general theory, which has not yet been constructed. Second, the indicated 
formulas have been derived within the framework of a hypothesis of quasisteadiness accord- 
ing to which the time scale of change is assumed to be considerably greater than any of the 
relaxation times for the exchange processes occurring at the surfaces of the inclusions, 
with magnitudes on the order of a2/D0, a2/D1,a /k0, anda/k I. Third, it is assumed that in 
the corresponding surface layers local thermodynamic equilibrium is established, i.e., the 
surface concentration F may be regarded as some characteristic of dispersion that is a func- 
tion both of temperature and pressure. The quantities F and c,i , introduced in (4), may 
additionally depend on a. For macroscopic inclusions it is permissible to neglect this rela- 
tionship, as well as the volume of the surface layers in comparison to the volume of the 
phases, which is precisely what was done in formulas (2) and (3). 

Assuming that ~0 >> I, we can represent x and y in the form of the series 

i>o i>o 
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Fig. I. The relationship between p and the dimensionless effective coefficient of tran- 
sit diffusion (a), the coefficient of interphase mass exchange and the rate of change in 
the dimensions of the inclusions (b), and the velocity of diffusive movement on the part 
of the inclusions (c); the numerals at the curves identify the values of the parameter m. 

and solve Eq. 
lations for the first two coefficients of these series, we have 

1 - - p  1 + ~  1 + ~  1 
x 0 =  , m .... , 0 =  

1 - - 3 0 ( 1  + p ) m  1] a 

(2) by the small-parameter method. In particular, after performing the calcu- 

Pl, 

and subsequently, 

v.= 1+ l + - y y  ]/ i +  3p + 
4 ' 2 , 

(5) 

x ~ = 3 p  1 + p  x](l-+-~) [ p ( l + y 0 ) ~ _ 4 _  ( 2 + 3 p ) ~ , ]  

l - - p  T I [ l + p  ' '1 J '  

( 6 )  

xoYo ( 1 + go) z 

2 + g o  

[ t h e  p a r a m e t e r  ~ i n  ( 5 )  and  ( 6 )  i s  r e t a i n e d ,  s i n c e  i t  may be  o f  t h e  o r d e r  o f  u n i t y  e v e n  a s  
B0 ~ ~ ,  i f  s i m u l t a n e o u s l y  B1 ~ ~ ] .  

L e t  u s  e x a m i n e  in  d e t a i l  t h e  l i m i t  d i f f u s i o n  r e g i m e  f r o m  t h e  s t a n d p o i n t  o f  t h e  c o n t i n u -  
pus phase, assuming formally that B0 + ~, x ~ x o, and y + Y0. 
(5) we obtain 

D l - - p  
X ~ X 0 ~-~= - -  

Do l - - 3 p ( l + p )  m '  

In this case, from (i) and 

z = K 3pDo - 1 + -V 3-p 1 + + , 
1 - -  3 p ( l  + 9) m 

(7) 

in which case the quantity 3pD 0/a 2 has the sense of the coefficient of interphase mass ex- 
change, wherein the effects of proximity are neglected. 

In this same approximation from formula (3) we have 

da Do C.o--Co 
- xo ( 1 + go)  

dt a c . o - - c**  

~0 ~7 CO ~1 
w . . . .  3 ( l + p ) x o  , ~ - -  

c.o - -  Cc.~ 1 + P l  " 

( 8 )  
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Using (3) and (6), it is not difficult also to obtain correction factors for da/dt and 
w on the order of 1/60. 

The coefficient of transit diffusion depends not only on p, but also on the parameters 
and D, and consequently, on the nature of the regime in which exchange takes place between 

the surface layer and the solution within the inclusions, as well as on the coefficient a. 
If m < 0 [a > (i + ~1)$i-i], X and D diminish with increasing p all the more rapidly, the 
larger the value of ~. If m > 1/3 [(i + ~i)~i -I > ~ > (i + ~i)[~i + 3(1 + $)]-i], x and 
D increase monotonically. When 0 < m < i/3[~ < (i + $i)[$i + 3(1 + ~)]-i] both of the indi- 
cated functions diminish within the region of small p, attaining a minimum, and then in- 
creasing. Characteristic relationships between x and p are presented for various m in Fig. 
la. In the limit diffusion regime relative to the dispersion phase (~i § ~), from (7) we 
have D = (I - p)D 0, which coincides with the result for diffusion in the dispersion medium 
of absorbing or emitting impurity particles which retain their dimensions in this case [4, 
5]. In the limit kinetic regime (~i § 0) we obtain 

D = 1 - - p  Do, 
1 --3~(1 + p ) ~  

i.e., when ~ > 1/3 the coefficient of diffusion increases monotonically with p, while in 
the case of a < 1/3, it increases with the minimum. The possibility of increasing the ef- 
fective coefficient of transit diffusion in a heterogeneous medium in comparison with the 
coefficient of diffusion in a uniform matrix is a new and somewhat unexpected result. The 
divergence of D as p seeks to attain some critical value, possible with ~ not small, is ap- 
parently associated with the disruption of the conditions of applicability for the continual 
theory. 

The relationship between the coefficient of interphase mass exchange and p is deter- 
mined by the function z(p) from (7); this relationship is shown in Fig. lb. The diverse 
nature of the effect of proximity on the transit diffusion and the diffusion to individual 
inclusions had been noted earlier in [4, 5]. 

It follows from (8) that as p § 0 

~ , ~ " ' + W  0 ~ -- 
dt \ dt ]o a C,o--C,1 c , 0 - - ~ c , t  

The f i r s t  o f  t h e s e  f o r m u l a s ,  d e s c r i b i n g  t h e  e v o l u t i o n  o f  a s i n g l e  i n c l u s i o n  in  an un-  
bounded m a t r i x  i s  w e l l  known [2 ,  3 ] .  The s e c o n d  f o r m u l a  a l s o  c o i n c i d e s  w i t h  t h e  known r e s u l t  
[6 ,  7] f o r  t h e  c a s e  in  which  ~ = 1, i . e . ,  f o r  d i f f u s i o n  r e g i m e s  which  p e r t a i n  t o  b o t h  p h a s e s .  
The r a t i o  d a / d t  as  a f u n c t i o n  o f  ( d a / d t )  0 i s  a l s o  d e f i n e d  by t h e  f u n c t i o n  z ( p )  ( s e e  F i g .  
l b ) .  The r e l a t i o n s h i p s  o f  w/w 0 t o  p f o r  v a r i o u s  m a r e  shown in  F i g .  l c .  

Separately, we will stress the influence of the nature of the conversion regime which 
pertains to the dispersion phase on the direction of the diffusive movement of the inclusions. 
In the diffusion regime ($i § ~, ~ § i) the inclusions move in or opposite to the direction 
of the concentration gradient, depending on whether the inclusions have been enriched with 
or deprived of the impurity, relative to the matrix. With departure from the diffusion re- 
gime, the critical value a = i/~ of the distribution factor differs from unity; a pronounced 
change in the nature of the influence exerted by proximity on transit diffusion corresponds 
to this same value. 

Let us note that with consideration of (8) the conditions of quasisteadiness can be 
presented in the form 

l ! c,o--Co ~ ra in{l ,  • ~o, • • = D__~I , 
�9 c , o - - c , 1  Do 

from which we see that satisfaction of these conditions is facilitated for the diffusion 
regimes, whereas it is quite problematic in the case of the kinetic regimes. In order for 
the theory from [i] to be valid, it is required that w be small, which imposes an upper bound 
on [Vc0J. 

In order to obtain simple results which might be compared against the experimental data, 
let us examine in greater detail the evolution of three-dimensional uniform dispersion as 
described by the following equations from [i] 
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, dco dp = 0 ,  c 1 = (1 
(1 - -  p ~ - - ~ -  - ( C , o - -  c,1) dt 

ida) 
k 1 dt c**, 

3 p  d____a_a __ do = 3 p z  Do c , o - - c o  
a dt dt a 2 c , o - - c , ~  

(9) 

These equations were formulated with utilization of the condition of quasisteadiness, and 
within the limits of accuracy assumed in [i] the first of these equations is equivalent to 
the equation 

(d/dO [( 1 -- p) co + Pq] = O, 

reflecting the balance of the impurity throughout the dispersion as a whole, and we will 
make use of this here. Taking into consideration the formula for c I from (9), we obtain 

c ~ pc,~ (1 I d a )  
co = 1 - - p  1 - - p  k 1 dt ' 

where  c ~ = (1 - p~  ~ + p=%~ i s  t h e  a v e r a g e  c o n c e n t r a t i o n  o f  t h e  i m p u r i t y  in  t h e  d i s p e r -  
s i o n  a t  some i n i t i a l  i n s t a n t  o f  t i m e .  Us ing  t h i s  r e p r e s e n t a t i o n  in  t h e  f o r m u l a  f o r  d a / d t  
from (8), we have 

da a dp z / 1 +  p z r "~-i Do 
dt - -  3p dt -- 1 p / ] l _ p  ~-~1 (P|  p ) - '  

- -  a ( 1 0 )  

o~ = (C,o - c~ - -  c,~)-' .  

If 0 < p~ < -0.5-0.6, then p~ represents the volume concentration of the dispersion 
in a thermodynamic state of equilibrium. When 0~ < 0, the solid solution in the uniform 
matrix corresponds to the equilibrium state. When p~ > i, the solid solution in the ma- 
terial of the inclusions which occupies the entire volume corresponds to the equilibrium 
state. 

If the conversion regime is of the diffusion type relative to each of the phases, it 
then follows from (9) and (i0) that 

da _ a dp _ x o ( l + y o )  O ~ - - P  Do 
dt - -  3---p d ~  1 - - p  a ' ( 1 i )  

where  x 0 and Y0 a r e  d e t e r m i n e d  in  ( 5 ) .  I t  i s  n o t  d i f f i c u l t  a l s o  t o  o b t a i n  a c o r r e c t i o n  f a c -  
t o r  on t h e  o r d e r  o f  81-1 f o r  t h e  q u a n t i t y  in  ( 1 1 ) .  However ,  d e r i v a t i o n  o f  a s i m i l a r  f o r m u l a  
f o r  a r e g i m e  t h a t  i s  k i n e t i c  r e l a t i v e  t o  t h e  d i s p e r s i o n  p h a s e  i s  p o i n t l e s s ,  s i n c e  t h e  c o n d i -  

- - I  t i o n s  o f  q u a s i s t e a d i n e s s ,  such  as  a r e  r e q u i r e d  f o r  t h e  v a l i d i t y  o f  ( 9 ) ,  demand t h a t  kx �9 
( d a / d t )  << i and ,  c o n s e q u e n t l y ,  i t  c a n n o t  be assumed t h a t  ~l ~ ~ / ~  in  ( I 0 ) .  

I f  p~ > 0, t h e n  as  t + ~ t h e  s o l u t i o n s  o f  Eqs .  (10)  o r  ( l l )  m o n o t o n i c a l l y  a p p r o a c h  some 
l i m i t  v a l u e s  such  t h a t  t h e  c o r r e s p o n d i n g  p becomes e q u a l  t o  p~. In  t h i s  r e g a r d ,  t h e y  d i f f e r  
s i g n i f i c a n t l y  f rom s o l u t i o n s  (known t o  t h e  a u t h o r s )  r e l a t i n g  t o  p r o b l e m s  d e a l i n g  w i t h  t h e  
g rowth  o f  g r a i n s  in  t h e  new p h a s e ,  a c c o r d i n g  t o  which  t h e  r a d i u s  o f  t h e  g r a i n  i n c r e a s e s  w i t h -  
ou t  bound,  u s u a l l y  in  p r o p o r t i o n  t o  ( t .  As an e x a m p l e  F i g .  2 shows t h e  d i m e n s i o n l e s s  r a d i u s  
a / b  = 9 I / 3  as  a f u n c t i o n  o f  t h e  d i m e n s i o n l e s s  t i m e  �9 = D0b-2 t  (b  i s  t h e  a v e r a g e  d i s t a n c e  
between the centers of the inclusions), which follows from (ii) under the initial condition 
~ = 0; here we also find the relationships which flow out of the cell model, as well as 

the curves a/b = 2~ ~r X = v ~ +  ~/4, which correspond to the theory from [3, 8]. We 
see that the theory from [3, 8] leads to a conclusion of an unlimited, nearly parabolic, 
growth in the inclusions, whereas the values of a/b ~ i are entirely devoid of physical mean- 
ing. This is apparently associated with the poor convergence of the series in [3, 8] for 
longer times and with considerable error, which arises when we take into consideration only 
the first terms. 

For low values of ~, the curves following from solution (ii), pass above the correspon- 
ding curves derived from the theory put forward in [3, 8]. This is a consequence of the 
above-noted intensification of the interphase exchange as the concentration of the dispersion 
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Fig. 2. The kinetics of the growth of the inclusions in the diffu- 
sion regime relative to each of the phases; the solid lines, the 
dashed lines, and the dot-dash lines pertain, respectively, to Eq. 
(ii), the cell model, and the nonsteady theory without consideration 
of proximity [3, 8]; the numerals at the curves represent the values 
of p~. 

Fig. 3. Experimental values and the theoretical curve (dashed) for 
the rate of growth in ferrite grains within austenite, taken from 
[3]; the solid curves represent the proposed theory [Eq. (ii)] when 
n = I0 zl (i) and i013 (2) cm -3 d~/dt, cm/sec; t, sec. 

6~ ~ / / / / / ~  " 

s.l~si' , , , ~  , z.ICe~ 
o g5 50 0 ~ ~ 

Fig. 4. Isothermal growth in cementite particles within the ferrite; 
the points denote the experimental data from [9] (a) and [I0, ii] (b); 
a. 1-3) T = 720, 750, 800~ i070~ = 0.9, 2.2, 0.75; 106D0 = 0.942, 
2.61, 13.6 cmZ/sec; 10-4n = 0.60, 0.12, 0.15 cm -3 b. 1-3) T = 450, 
500, 550~ 107p~ = 0.59, 0.75, 0.75; 10SD0 = 0.91, 1.7, 4.0 cmZ/sec; 
10-9n = 1.45, 0.48, 0.23 cm -s, H = 1.82, 2.24, 2.69, the form factor 
H determines the dimensions of the crystals d X = q~-~-/H-(a) in the 
direction of one of the axes; the solid curves represent solutions for 
Eq. (ii), the dashed curves (b) represent the nonsteady theory in which 
proximity is neglected, as taken from [3, 8]. a, dx, cm; t, h, min. 

phase increases. It becomes clear from (ii) that ~he diffusion constriction leads, on the 
one hand, to the indicated intensification of mass exchange which, in turn, promotes acceler- 
ation of the growth of the inclusions and, on the other hand, to an accelerated approximation 
of the concentration within the bounded volumes of the matrix to its equilibrium value, which 
brings about the subsequent reduction in the rate of growth. Obviously, it is the former 
effect that predominates in the early stage. The increase in the rate of new-phase grain 
growth relative to the theoretical values has been repeatedly observed experimentally, but 
no satisfactory explanation for this phenomenon has been proposed. As an example, Fig. 3 
shows the experimental values for the rate of grain growth for ferrite in austenite and the 
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curve da/dt = %(D0/t) I/2, taken from [3]. Here we also find the theoretical relationships 
which follow from (ii) in the assumption that numerous grains undergo simultaneous growth, 
rather than just a single grain. We see that the concepts being discussed here may, in actu- 
al fact, be utilized to explain the indicated divergence between theory and experiment. 

The theoretical relationships which follow from Eq. (ii) are in rather good agreement 
with many experimental data from various authors, thus offering the needed basis for a gen- 
eral conclusion as to the adequacy of the theory developed here for purposes of describing 
diffusion conversion regimes. Figure 4a shows some of the experimental results collected 
in [9] on the growth of globular cementite in a ferrite matrix (pure carbon steels). Figure 
4b shows similar data from [i0, ii], obtained under conditions of isothermal tempering. 
Here we also find the theoretical curves which follow from (ii), and we have taken the nu- 
merical concentration n of the inclusions as the single running parameter. In the experi- 
ments shown in Fig. 4b the shape of the carbide crystals differs significantly from the 
spherical and the shape factor has been determined in the usual manner, from the condition 
of equality between the surface areas of actual crystals and the various dimensions along 
the principal axes of the cementite lattice and the equivalent sphere [i0, ii]. For pur- 
poses of comparison, Fig. 4b also shows the curves which follow from the nonsteady theory 
of inclusion diffusion growth, taken from [3, 8], wherein the effect of proximity constric- 
tions are neglected. 

As we can see from Figs. 3 and 4, the agreement of the theory developed in [i] and in 
this paper with the experimental data is quite satisfactory. This enables us to speak of 
the adequacy of this theory for purposes of describing the diffusion conversion regimes. 
However, generally speaking, this does not apply to regimes that differ significantly from 
diffusion regimes. From the results obtained above it becomes clear that the change in the 
conversion regime must lead to extremely nontrivial changes in the nature of the relation- 
ships between the macrokinetic quantities and both the physical and regime parameters. There- 
fore, in extending the theory to the phase-conversion regimes that are nearly kinetic, we 
can consider one of the primary problems in the subsequent investigations. 

In conclusion, let us note that certain of the attempts to formulate both a system of 
equations to control the processes of conversion and those of transit mass transport in solid 
dispersions, as well as the relationships between the quantities contained in these equations 
and the dispersion concentrations, as well as other parameters, are clearly phenomenological 
in nature (see, for example, [12-14]). In this case, the resulting equations differ signifi- 
cantly from those formulated in [i] and utilized above. There is therefore no doubt that 
the traditional approaches to the description of phase conversions in heterogeneous metals 
are in need of considerable correction, if not total reexamination. 

NOTATION 

a, b, radius and mean distance between the centers of the inclusions; Co, ci, the mean 
impurity concentrations within the matrix and in the inclusions; c,0, c,l, the respective 
equilibrium concentrations; D, Do, DI, the diffusion coefficients in the dispersion as a 
whole, in the matrix, and in the inclusions, respectively; K, the coefficient of interphase 
mass exchange; k0, kl, the rate constants of impurity sorption by the surface layer out of 
the mass of the matrix and the inclusions; ks0, ksl, the rate constants of the corresponding 
desorption reactions; n, the numerical concentration of inclusions; t, time; w, the velocity 
of diffusional motion on the part of the inclusions; x, y, z, the unknowns introduced into 
(i) and (7); ~, the distribution factor; $i =aki/Di; r is the surface concentration; ~, N, 
$, the parameters introduced into (5), (8), and (4); ~ = DI/D0; p, the volumetric concentra- 
tion of the inclusions; p=, a quantity determined in (i0); ~, a parameter introduced in (5); 
the exponents indicate the initial values of the quantities. 
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APPLICATION OF THE THEORY OF SIMILARITY FOR PURPOSES 

OF GENERALIZING THE THERMAL-DIFFUSION FACTOR FOR 

MIXTURES OF MULTIATOMIC NONPOLAR GASES 

A. F. Zolotukhina UDC 536.539.1 

The thermal-diffusion factor of 14 nonpolar-gas mixtures has been generalized 
on the basis of similarity theory. The theoretical values of ~th obtained on 
the basis of this generalized relationship are compared with the experimental 
data. 

A great amount of experimental material on the thermal diffusion of mixtures containing 
multiatomic gases has recently been published in the literature. Nevertheless, the practical 
application of these data frequently encounters difficulties. Indeterminacy arises in the 
evaluation of the reliability of these experimental data, obtained by various authors for 
the corresponding ranges of average temperatures and concentrations, differing from one an- 
other by more than 10%. The various semiempirical methods of forecasting thermal-diffusion 
characteristics are complicated in their application, as for example [i, 2] those which are 
based on the utilization (in the calculations) of experimental data. 

The thermal-diffusion results are presented in the literature, as a rule, in the form 
of a relationship between the thermal-diffusion factor ~th and the average (characteristic) 
temperature T or the concentration x. In a number of cases, in the place of ~th we are con- 
fronted with the values of Ac I (or q) as a function of T I and T 2 (T I and T 2 denote the tem- 
peratures of the vessels in the thermal-diffusion apparatus, in which case T l > T2). 

Various methods exist for the averaging of the temperature [3], but the most widely 
used is the Brown formula [4], which determines the mean logarithmic temperature: 

T= T1T2 In T1 (1) 
T1--T~ T~ 

Since in accordance with (i) various experimental conditions (i.e., various values of 
T l and T 2) may correspond to one and the same average temperature, we are interested in 
evaluating the changes in the quantity ~th with a change in the values of T I and T 2, but 
with the mean logarithmic temperature kept constant. The values of ~th were studied in [5] 
for various temperature values in the upper and lower vessels of the thermal-diffusion ap- 
paratus. It was demonstrated (as an example, for the mixture He--Nz) that with a fixed tem- 
perature T 2 for the lower vessel on the order of 290-293 K and with a change in the tempera- 
ture T I in the upper vessel from 400 to i010 K the quantity ~th undergoes virtually no change. 
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